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Problem setup

I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

nonsmooth h : Rp → R (with a known structure), smooth
F : Rn → Rp (expensive to evaluate).

I Idea: Build p models, one for each component of F . Use model
gradients in place of ∇F .

I Requires a manifold representation of h.
I Example: censored loss:

f (x) =

p∑
i=1

|di −max {ci ,Fi (x)}|
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Manifold representation

I h(y) = max
i∈{1,...,p}

yi p manifolds

I h(y) = ‖y‖∞ = max
i∈{1,...,p}

|yi | 2p manifolds

I h(y) = maxi∈I1{yi} −mini∈I2{yi} |I1| |I2| manifolds

I h(y) = ‖y‖1 =

p∑
i=1

|yi | 2p manifolds

I h(y) =

p∑
i=1

|di −max {ci , yi}| 3p manifolds. If p = 45,

approximately 3× 1021 potential manifolds.

User scripts need to calculate:

f (x), F (x), H(F (x)), {∇hi (F (x)) : i ∈ H(F (x))}, {hi (F (x)) : i ∈ G},
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Smooth master model

gk , proj
(
0, co

(
Gk)) ∈ co

(
Gk) ,

where

Gk ,
⋃

i∈Ih(F (xk ))

{
∇M(xk)∇hi (F (xk))

}
or

Gk ,
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇M(xk)∇hi (F (xk))

}
Define the smooth master model mf

k : Rn → R (with gradient gk) and
obtain step by (approximately) solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)
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Better trust-region subproblem?
Instead of solving

minimize
s

mf
k(xk + s)

subject to: s ∈ B(0,∆k)

How about

minimize
s

h(M(xk + s))

subject to: s ∈ B(0,∆k)

For censored `1 loss:

minimize
s

p∑
i=1

|di −max {ci , qi (x)}|

subject to: s ∈ B(0,∆k)

Question
Best method for solving composite nonsmooth quadratic problems?
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Measuring descent

I Descent is measured using a linearization h(k) of some selection
function h̄ and not h

I Must ensure information about h̄ is in Gk before taking a step

I h(k) must satisfy

h(k)(F (xk)) ≤ h(F (xk)) and h(k)(F (xk+sk)) ≥ h(F (xk+sk)),

I ρk ,
h(k)(F (xk))− h(k)(F (xk + sk))

m(xk)−m(xk + sk)
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Examples of h(k)

 F(x) F(x+s)

h
(F

(x
))

h
(k)
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Convergence

I If the trust region radius ∆k is a sufficiently small multiple of the
model gradient

∥∥gk
∥∥, the iteration is guaranteed to be successful.

I limk→∞∆k = 0.

I Some subsequence of master model gradients gk goes zero.

I Zero is in the generalized Clarke subdifferential of cluster points of
any subsequence of iterates with master model gradients
converging to zero.

I The same holds for cluster points of the entire sequence of iterates.
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Conclusions

When optimizing functions of the form h(F (x)) when
I h is “easy”
I F is “hard”

it can be advantageous to model Fi and then combine those models via
known information about h.

jmlarson@anl.gov

Thank you!
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